Publications


2023

  • Khoonkari, M., Sayed, J.E., Oggioni, M., Amirsadeghi, A., Parisi, D., Kruyt, F., van Rijn, P., Włodarczyk‐Biegun, M.K. & Kamperman, M. (2023). Bioinspired Processing: Complex Coacervates as Versatile Inks for 3D Bioprinting. Advanced Materials, p.221076 https://doi.org/10.1002/adma.202210769
  • Sun, J., Monreal Santiago, G., Yang, F., Zhou, W., Rudolf, P., Portale, G., & Kamperman, M. (2023) Bioinspired Processing of Keratin into Upcycled Fibers through pH-Induced Coacervation. ACS Sustainable Chem. Eng., 11(5), p. 1985–1994 https://doi.org/10.1021/acssuschemeng.2c06865

2022

  • Sun, J., Monreal Santiago, G., Zhou, W., Portale, G., & Kamperman, M. (2022) Water-processable, stretchable and ion-conducting coacervate fibers from keratin associations with polyelectrolytes. ACS Sustainable Chem. Eng., 10 (48), p. 15968-15977 https://doi.org/10.1021/acssuschemeng.2c05411

  • Pelras, T., Hofman, A. H., Germain, L. M. H., Maan, A. M. C., Loos, K., & Kamperman, M. (2022) Strong Anionic/Charge-Neutral Block Copolymers from Cu(0)-Mediated Reversible Deactivation Radical Polymerization. Macromolecules. https://doi.org/10.1021/acs.macromol.2c01487

  • Es Sayed, J., Khoonkari, M., Oggioni, M., Perrin, P., Sanson, N., Kamperman, M., & Włodarczyk-Biegun, M. K. (2022). Multi-Responsive Jammed Micro-Gels Ink: Toward Control over the Resolution and the Stability of 3D Printed Scaffolds. Advanced functional materials [2207816]. https://doi.org/10.1002/adfm.202207816

  • Khoonkari, M., Liang, D., Lima, M.T., van der Land, T., Liang, Y., Sun, J., Dolga, A., Kamperman, M., van Rijn, P., & Kruyt, F.A., (2022). The Unfolded Protein Response Sensor PERK Mediates Stiffness-Dependent Adaptation in Glioblastoma Cells. International journal of molecular sciences23(12), p.6520. https://doi.org/10.3390/ijms23126520
  • Kembaren, R., Westphal, A.H., Kamperman, M., Kleijn, J.M., & Borst, J.W., (2022). Charged Polypeptide Tail Boosts the Salt Resistance of Enzyme-Containing Complex Coacervate Micelles. Biomacromolecules23(3), p.1195-1204. https://doi.org/10.1021/acs.biomac.1c01466
  • Khoonkari, M., Liang, D., Kamperman, M., Kruyt, F.A., & van Rijn, P., (2022). Physics of Brain Cancer: Multiscale Alterations of Glioblastoma Cells under Extracellular Matrix Stiffening. Pharmaceutics14(5), p.1031. https://doi.org/10.3390/pharmaceutics14051031
  • Zieliński, P. S., Gudeti, P. K. R., Rikmanspoel, T., & Włodarczyk-Biegun, M. K. (2023). 3D printing of bio-instructive materials: Toward directing the cell. Bioactive Mat. 19, 292-327 https://doi.org/10.1016/j.bioactmat.2022.04.008
  • Gladysz, M.Z., Stevanoska, M., Włodarczyk-Biegun, M.K., & Nagelkerke, A., (2022). Breaking through the barrier: Modelling and exploiting the physical microenvironment to enhance drug transport and efficacy. Advanced Drug Delivery Reviews, p.114183. https://doi.org/10.1016/j.addr.2022.114183
  • Kembaren, R., Kleijn, J.M., Borst, J.W., Kamperman, M., & Hofman, A.H., 2022. Enhanced stability of complex coacervate core micelles following different core-crosslinking strategies. Soft Matter18(15), pp.3052-3062. https://doi.org/10.1039/D2SM00088A
  • Es Sayed, J., Brummer, H., Stuart, M. C. A., Sanson, N., Perrin, P., & Kamperman, M. (2022). Responsive Pickering Emulsions Stabilized by Frozen Complex Coacervate Core Micelles. ACS Macro Lett. 11, 20-25 https://doi.org/10.1021/acsmacrolett.1c00647

2021

  • Filippov, A. D., Sprakel, J., & Kamperman, M. (2021). Complex coacervation and metal–ligand bonding as synergistic design elements for aqueous viscoelastic materials. Soft Matter. 17, 3294. https://doi.org/10.1039/D0SM02236E
  • Sharma, P., Saggiomo, V., van der Doef, V., Kamperman, M., & Dijksman, J. A. (2021). Hooked on mushrooms: Preparation and mechanics of a bioinspired soft probabilistic fastener. Biointerphases. 16, 011002. https://doi.org/10.1016/j.bprint.2020.e00098

2020

  • Kembaren, R., Fokkink, R., Westphal, A. H., Kamperman, M., Kleijn, J. M., & Borst, J. W. (2020). Balancing Enzyme Encapsulation Efficiency and Stability in Complex Coacervate Core Micelles. Langmuir36(29), 8494-8502. https://doi.org/(…)acs.langmuir.0c01073
  • Maan, A., Hofman, A., de Vos, W. M., & Kamperman, M. (2020). Recent Developments and Practical Feasibility of Polymer-Based Antifouling Coatings. Advanced Functional Materials, [2000936]. https://doi.org/10.1002/adfm.202000936
  • Dompe, M., Vahdati, M., Van Ligten, F., Serrano, F. J. C., Hourdet, D., Creton, C., … Kamperman, M. (2020). Enhancement of the Adhesive Properties by Optimizing the Water Content in PNIPAM-Functionalized Complex Coacervates. ACS Applied Polymer Materials2(4), 1722-1730. https://doi.org/10.1021/acsapm.0c00185
  • Dompe, M., Cedano-Serrano, F. J., Vandati, M., Hourdet, D., van der Gucht, J., Kamperman, M., & Kodger, T. E. (2020). Hybrid Complex Coacervate. Polymers12(2), [320]. https://doi.org/10.3390/polym12020320
  • Mintis, D. G., Dompe, M., Kamperman, M., & Mavrantzas, V. G. (2020). Effect of Polymer Concentration on the Structure and Dynamics of Short Poly(N,N-dimethylaminoethyl methacrylate) in Aqueous Solution: A Combined Experimental and Molecular Dynamics Study. Journal of Physical Chemistry B124(1), 240-252. https://doi.org/10.1021/acs.jpcb.9b08966
  • Dompe, M., Cedano-Serrano, F. J., Vahdati, M., Sidoli, U., Heckert, O., Synytska, A., … Kamperman, M. (2020). Tuning the Interactions in Multiresponsive Complex Coacervate-Based Underwater Adhesives. International Journal of Molecular Sciences21(1), [100]. https://doi.org/10.3390/ijms21010100

2019

  • Dompe, M., Cedano-Serrano, F. J., Vahdati, M., van Westerveld, L., Hourdet, D., Creton, C., … Kamperman, M. (2020). Underwater Adhesion of Multiresponsive Complex Coacervates. Advanced Materials Interfaces7(4),[1901785]. https://doi.org/10.1002/admi.201901785
  • Feat, A., Federle, W., Kamperman, M., Murray, M., van der Gucht, J., & Taylor, P. (2019). Slippery paints: Eco-friendly coatings that cause ants to slip. Progress in Organic Coatings135, 331-344. https://doi.org/(…)porgcoat.2019.06.004
  • Hofman, A. H., Fokkink, R., & Kamperman, M. (2019). A mild and quantitative route towards well-defined strong anionic/hydrophobic diblock copolymers: Synthesis and aqueous self-assembly. Polymer Chemistry10(45), 6109-6115. https://doi.org/10.1039/C9PY01227C
  • Feat, A., Federle, W., Kamperman,M., & van der Gucht, J. (2019). Coatings preventing insect adhesion: An overview. Progress in Organic Coatings134, 349-359. https://doi.org/(…)porgcoat.2019.05.013
  • Dompe, M., Cedano-Serrano, F. J., Heckert, O., van den Heuvel, N., van der Gucht, J., Tran, Y., … Kamperman, M. (2019). Thermoresponsive Complex Coacervate-Based Underwater Adhesive. Advanced materials, 31(21), [1808179]. https://doi.org/10.1002/adma.201808179
  • van Assenbergh, P., Fokker, M., Langowski, J., van Esch, J., Kamperman, M., & Dodou, D. (2019). Pull-off and friction forces of micropatterned elastomers on soft substrates: the effects of pattern length scale and stiffness. Beilstein Journal of Nanotechnology10, 79-94. https://doi.org/10.3762/bjnano.10.8

2018

  • Filippov, A. D., van Hees, I. A., Fokkink, R., Voets, I. K., & Kamperman, M. (2018). Rapid and Quantitative De-tert-butylation for Poly(acrylic acid) Block Copolymers and Influence on Relaxation of Thermoassociated Transient Networks. Macromolecules51(20), 8316-8323. https://doi.org/acs.macromol.8b01440
  • Hofman, A. H., van Hees, I. A., Yang, J., & Kamperman, M. (2018). Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox. Advanced materials30(19), [1704640]. https://doi.org/10.1002/adma.201704640